Analysing plant closure effects using time-varying mixture-of-experts Markov chain clustering
نویسندگان
چکیده
منابع مشابه
Analysing Plant Closure Effects Using Time-Varying Mixture-of-Experts Markov Chain Clustering
In this paper, we study data on discrete labor market transitions from Austria. In particular, we follow the careers of workers who experience a job displacement due to plant closure and observe – over a period of forty quarters – whether these workers manage to return to a steady career path. To analyse these discrete-valued panel data, we apply a new method of Bayesian Markov chain clustering...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولEmbedded Classification Kernel Using Som Clustering and Mixture of Experts
-In this paper, we introduce a new classification kernel by embedding self organized map (SOM) clustering with mixture of radial basis function (RBF) networks. The model’s efficacy is demonstrated in solving a multi-class TIMIT speech recognition problem where the kernel is used to learn the multidimensional cepstral feature vectors to estimate their posterior class probabilities. The tests res...
متن کاملAnalysing Developers Affectiveness through Markov chain Models
In this paper, we present an analysis of more than 500K comments from open-source repositories of software systems. Our aim is to empirically determine how developers interact with each other under certain psychological conditions generated by politeness, sentiment and emotion expressed within developers’ comments. Developers involved in an open-source projects do not usually know each other; t...
متن کاملAdaptive Incremental Mixture Markov chain Monte Carlo
We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. Typically, adaptive MCMC methods recursively update a parametric proposal kernel with a global rule; by contrast AIMM locally adapts a non-parametric kernel. AIMM is based on an independent Metropolis-Hastings proposal d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2018
ISSN: 1932-6157
DOI: 10.1214/17-aoas1132